
Towards 1-day Vulnerability
Detection using Semantic Patch
Signatures
Alexis Challande

Supervisor: Guénaël Renault Industrial supervisor: Robin David

Motivation

Note
Patching software is one of the first security measure to

protect a device against threats over time.

Extracts from websites on How to be secure online?

1 / 63

Motivation

BOLT A failure to patch a device leaves end users at risk.

Patching is hard:

Times-Circle Patch un-availability discontinued software, late updates

Times-Circle Patch compatibility with the users needs may break critical features

Times-Circle Incomplete patches incorrectly patches the vulnerability

Eye-Slash Vendors limit the support duration of their products.

2 / 63

Motivation

BOLT A failure to patch a device leaves end users at risk.

Patching is hard:

Times-Circle Patch un-availability discontinued software, late updates

Times-Circle Patch compatibility with the users needs may break critical features

Times-Circle Incomplete patches incorrectly patches the vulnerability

Android Hidden Patch Gap [Sec20]

In 2019, the rate of missed patches was 30% per unique firmware build on average

2 / 63

Vocabulary & Definitions

Definitions required for the remaining of this presentation

Chevron-right A software vulnerability is a defect in a software with security implications

Chevron-right A commit is a modification of a versioned project

Chevron-right A software patch is a set of changes between two versions [Wan+21]

Chevron-right A 1-day is a vulnerability for which a patch has been released since at least one day

BOOK-OPEN This work focuses on 1-day vulnerabilities.

3 / 63

Vocabulary & Definitions

Definitions required for the remaining of this presentation

Chevron-right A software vulnerability is a defect in a software with security implications

Chevron-right A commit is a modification of a versioned project

Chevron-right A software patch is a set of changes between two versions [Wan+21]

Chevron-right A 1-day is a vulnerability for which a patch has been released since at least one day

BOOK-OPEN This work focuses on 1-day vulnerabilities.

3 / 63

Vulnerability Lifecycle

Unknown
vulnerability 0-day vulnerability 1-day vulnerability

Patch Release

Public Disclosure

Vulnerability Discovery

Vendor Notification

4 / 63

Problem Statement

How to assert whether a device has been patched
against a vulnerability?

BOLT
Relying on the reported versions number is

insufficient due to patch backport or missing patches.

5 / 63

Problem Statement

How to assert whether a device has been patched
against a vulnerability?

BOLT
Relying on the reported versions number is

insufficient due to patch backport or missing patches.

5 / 63

Patch Presence Test

How to test the presence of a patch in a binary program?

Definition
The patch presence test is the capability to accurately check whether a security patch is
present inside a software [ZQ18]

Bell The Patch Presence Test is not a generic Bug Search.
Both the bug and the patch are known.

6 / 63

Binary Analysis

Why considering only binary code?

Focus on binary only methods because source code is unavailable

WannaCry (2017)

Chevron-right Massive ransomware attack attributed to North Korea

Chevron-right Propagated using EternalBlue an exploit stolen from NSA

Chevron-right Forced Microsoft to issue a patch for a deprecated system

ARROW-RIGHT The vulnerability affected Samba a closed source component

7 / 63

Binary Analysis

Why considering only binary code?

Focus on binary only methods because source code is unavailable

WannaCry (2017)

Chevron-right Massive ransomware attack attributed to North Korea

Chevron-right Propagated using EternalBlue an exploit stolen from NSA

Chevron-right Forced Microsoft to issue a patch for a deprecated system

ARROW-RIGHT The vulnerability affected Samba a closed source component

7 / 63

Thesis Contributions

The five main contributions of this work

Formalization of the
Firmware Matching

Problem

8 / 63

Thesis Contributions

The five main contributions of this work

Formalization of the
Firmware Matching

Problem

3-step solution
Filtering-Selecting-

Matching
 to solve the FMP

8 / 63

Thesis Contributions

The five main contributions of this work

Formalization of the
Firmware Matching

Problem

3-step solution
Filtering-Selecting-

Matching
 to solve the FMP

Candidate
implementation of the

FSM: QSIG

8 / 63

Thesis Contributions

The five main contributions of this work

Formalization of the
Firmware Matching

Problem

3-step solution
Filtering-Selecting-

Matching
 to solve the FMP

Candidate
implementation of the

FSM: QSIG

Construction of a
commit-level

precise dataset
to evaluate QSig

8 / 63

Thesis Contributions

The five main contributions of this work

Formalization of the
Firmware Matching

Problem

3-step solution
Filtering-Selecting-

Matching
 to solve the FMP

Candidate
implementation of the

FSM: QSIG

Construction of a
commit-level

precise dataset
to evaluate QSig

Extending QSig's
filtering using
Build Graphs

8 / 63

Outline

Chapter 2:

Firmware Matching Problem

What are the patch
characteristics ?

How to find patches
in Android Devices?

Patch Information

Android Devices

Patch Missing

Patch Found

9 / 63

Firmware Matching Problem

Definition
For a given firmware W and a function specific version fs find the largest subset P ⊂ W
such that ∀P ∈ P, fs ∈ P.
The problem asks to identify the function fs position in P.

Chevron-right A W is a set of programs P abstract a firmware as a generic filesystem

Chevron-right A program P is a set of functions f

10 / 63

Firmware Matching Problem

Definition
For a given firmware W and a function specific version fs find the largest subset P ⊂ W
such that ∀P ∈ P, fs ∈ P.
The problem asks to identify the function fs position in P.

The FMP is a systemization of the Patch Presence Test on a firmware when the function
version is a patched function.

10 / 63

State of the Art

Firmware Matching Problem

Numerous approaches have been proposed in the literature to solve the Firmware
Matching Problem

Selected approaches:

Chevron-right SPAIN [Xu+17]

Chevron-right FIBER [ZQ18]

Chevron-right 1dVul [Pen+19]

Chevron-right PATCHECKO [Sun+20]

Chevron-right BINXRAY [Xu+20]

Chevron-right BScout [Dai+20]

Chevron-right PDiff [Jia+20]

Chevron-right VIVA [Xia+21]

Chevron-right QuickBCC [Jan+21]

Chevron-right PMatch [Lan+21]

Chevron-right P1OVD [Li+22]

Chevron-right …

11 / 63

State of the Art

Inputs Types
Types of input required by the solution?

Chevron-right Source code
Check-Circle Precise
Check-Circle Cross-architecture per design
Times-Circle Unapplicable to closed source binaries

Chevron-right Binary
Check-Circle Generalizable to every target
Check-Circle Precise at the lower level
Times-Circle Single architecture

Analysis Types
Does the solution requires a working
environment?

Chevron-right Static
Check-Circle Minimal requirements
Check-Circle Easily scalable
Times-Circle Unable to use runtime values

Chevron-right Hybrid
Check-Circle Results accuracy
Times-Circle Bootstraping is challenging

11 / 63

State of the Art

Inputs Types
Types of input required by the solution?

Chevron-right Source code
Check-Circle Precise
Check-Circle Cross-architecture per design
Times-Circle Unapplicable to closed source binaries

Chevron-right Binary
Check-Circle Generalizable to every target
Check-Circle Precise at the lower level
Times-Circle Single architecture

Analysis Types
Does the solution requires a working
environment?

Chevron-right Static
Check-Circle Minimal requirements
Check-Circle Easily scalable
Times-Circle Unable to use runtime values

Chevron-right Hybrid
Check-Circle Results accuracy
Times-Circle Bootstraping is challenging

11 / 63

State of the Art

Diffing
How to recover the differences between the
two inputs?

Chevron-right General Binary Diffing Tools [Jox21; Zyn21]

Check-Circle Reliable
Check-Circle Offloads parts of the workflow
Times-Circle Not customizable

Chevron-right Custom solutions
Check-Circle Tailored for a specific problem
Times-Circle Requires additional work in an

orthogonal task

Multiple Architectures
How to adapt the solution to multiple binary
architectures?

Chevron-right Intermediate Representation
Check-Circle Write once for every architecture
Check-Circle Easily scalable
Times-Circle Requires an appropriate lifter

Chevron-right Assembly based
Check-Circle Possibility to use target specific

knowledge
Check-Circle No dependency to external tool
Times-Circle Generate a signature per architecture

11 / 63

State of the Art

Diffing
How to recover the differences between the
two inputs?

Chevron-right General Binary Diffing Tools [Jox21; Zyn21]

Check-Circle Reliable
Check-Circle Offloads parts of the workflow
Times-Circle Not customizable

Chevron-right Custom solutions
Check-Circle Tailored for a specific problem
Times-Circle Requires additional work in an

orthogonal task

Multiple Architectures
How to adapt the solution to multiple binary
architectures?

Chevron-right Intermediate Representation
Check-Circle Write once for every architecture
Check-Circle Easily scalable
Times-Circle Requires an appropriate lifter

Chevron-right Assembly based
Check-Circle Possibility to use target specific

knowledge
Check-Circle No dependency to external tool
Times-Circle Generate a signature per architecture

11 / 63

FSM: Filtering-Selecting-Matching

Solving the FMP using a 3-step solution

Arrow-Alt-Circle-Right Filtering
Identifying inside a firmware the programs
containing the target function

Arrow-Alt-Circle-Right Selecting
Within a program, selecting the appropriate
function(s)

Arrow-Alt-Circle-Right Matching
Determining the selected function specific
version

Programs

Filtering
Firmware

Filtering : W× S −→ 2P

(W,S) 7−→ P = {P0, . . . ,Pn}
12 / 63

FSM: Filtering-Selecting-Matching

Solving the FMP using a 3-step solution

Arrow-Alt-Circle-Right Filtering
Identifying inside a firmware the programs
containing the target function

Arrow-Alt-Circle-Right Selecting
Within a program, selecting the appropriate
function(s)

Arrow-Alt-Circle-Right Matching
Determining the selected function specific
version

Functions

Selecting

Filtering
Firmware

Selecting : 2P × S −→ 2F

(P,S) 7−→ F = {f0, . . . , fm}
12 / 63

FSM: Filtering-Selecting-Matching

Solving the FMP using a 3-step solution

Arrow-Alt-Circle-Right Filtering
Identifying inside a firmware the programs
containing the target function

Arrow-Alt-Circle-Right Selecting
Within a program, selecting the appropriate
function(s)

Arrow-Alt-Circle-Right Matching
Determining the selected function specific
version

Matching

Match results

Selecting

Filtering
Firmware

Matching : 2F × S −→ R
(F ,S) 7−→ R

12 / 63

FMP in the State of the Art

How is the FMP addressed in the literature?

Filtering Selecting Matching Multiple
Functions

1dVul [Pen+19] Times Times Check N/A1

QuickBCC [Jan+21] Times Check Check Times

PMatch [Lan+21] Times Times Check Times

P1OVD [Li+22] Times Check Check Times

FMP with FSM Check Check Check Check

None of the previous approaches tackles every aspect of the FMP.

1Generates a crashing input
13 / 63

Patch: Fixing Commits Profile

What are the changes induced by a security commit on a project?

Objectives

Characterizing patches helps to:

Chevron-right Design signatures

Chevron-right Search them among other commits silent fix detection

14 / 63

Patch: Fixing Commits Profile

Versioned Project

Let us define a project P as a sorted sequence of commits simplified «git-like» definition

Pi = {c0, c1, . . . , ci−1, ci}

Chevron-right Pi is the project state after the application of ci

Code Property Graph

The CPG G = (V,E, λ, µ) of a program P is a directed edge-labeled attributed multigraph
constructed from its AST Abstract Syntax Tree, its CFG Control Flow Graph and its PDG
Program Dependency Graph [Fer87].

15 / 63

Patch: Fixing Commits Profile

Versioned Project

Let us define a project P as a sorted sequence of commits simplified «git-like» definition

Pi = {c0, c1, . . . , ci−1, ci}

Chevron-right Pi is the project state after the application of ci

Code Property Graph

The CPG G = (V,E, λ, µ) of a program P is a directed edge-labeled attributed multigraph
constructed from its AST Abstract Syntax Tree, its CFG Control Flow Graph and its PDG
Program Dependency Graph [Fer87].

15 / 63

PatchAnalysis

LIGHTBULB
Establish a fixing-commit profile by computing the difference between the
CPGs of the project in a vulnerable and fixed state.

First define a labelling function ψ

ψ : V −→ Φ

v 7−→ {String,Constant, ...}

Then, compute the changed nodes between the CPGs for f in vuln et fixed version

Df =
{
(add, ψ(v)) : v a vertice in Gf

fix \ Gf
vuln

}
∪
{
(del, ψ(v)) : v a vertice in Gf

vuln \ Gf
fix

}
16 / 63

PatchAnalysis

LIGHTBULB
Establish a fixing-commit profile by computing the difference between the
CPGs of the project in a vulnerable and fixed state.

Func 1

Func 1

Generate
CPG

Generate
CPG

New Nodes

Compute
difference

Deleted Nodes

16 / 63

Fixing-commit Profiles: Results

Program Level:

666

111
45

6 5 3
M A-D-M M-A M-D A-D A

0

200

400

600

of

 P
at

ch
es

A: Addition
D: Deletion

M: Modification

Function Level:

1475

951
800 758

445

197 110 24 8
CALL

CONDITION

ASSIGNMENT

CONSTANT

STRING
CAST

LOOP
GOTO

SWITCH

0

20

40

60

Pa
tc

he
s P

er
ce

nt
ag

e

17 / 63

Fixing-commit Profiles: Results

Program Level:

666

111
45

6 5 3
M A-D-M M-A M-D A-D A

0

200

400

600

of

 P
at

ch
es

A: Addition
D: Deletion

M: Modification

Function Level:

1475

951
800 758

445

197 110 24 8
CALL

CONDITION

ASSIGNMENT

CONSTANT

STRING
CAST

LOOP
GOTO

SWITCH

0

20

40

60

Pa
tc

he
s P

er
ce

nt
ag

e
17 / 63

Patch Signatures

Patch signatures are required to solve the FMP using the FSM

Signatures

Our patch signatures are based on «semantic invariants» portable artifacts

Signatures Features
Filtering

Chevron-right Binary Name

Chevron-right File type

Chevron-right …

Selecting

Chevron-right Function Name

Chevron-right Index

Chevron-right Strings

Chevron-right …

Matching

Chevron-right Strings

Chevron-right Constants

Chevron-right Calls

Chevron-right Conditions

18 / 63

Illustration: CVE-2018-9506

CVE-2018-9506 fixes an out-of-bound read in Android’s Bluetooth stack

[rsp+0xd8], ebx
...

mov
...

...
cmp
jnz

...
eax, 2
loc_182C89

lea
mov
mov
xor
xor
call
...

rsi, a111803925 ; "111803925"
edi, 0x534e4554
edx, 0xffffffff
ecx, ecx,
r8d, r8d
__android_log_error_write
...

movzx
cmp
jnz

ebp, [r14+2]
ebp, 2
loc_182CEB

[rsp+0xd8], ebx
...

mov
...

ecx, [r14+2]
...

movzx
...

X86

....
w0, #0x4554
x1, x1, #a111803925; "11803925"
w0, #0x534e, LSL#16
w2, #0
...
.__android_log_error_write

...
movz
add

movk
movn

...
bl

adrl
...

x9, x8
...

w22, [sp, #0xE0]
...

strb
...

ldrh
subs
b.hi

w6, [x23, #2]
wzr, w6, #2
loc_1E89C0

...
sybs
b.ne

...
wzr, w8, #2
loc_1e8950

w3, [x23, #2]
...

ldrh
...

ARM

19 / 63

Function Features Detailed

Strings

Common characteristic easily identifiable in
binary code

Usage:

Chevron-right Debug/Log message

Chevron-right Interface building

Chevron-right …

Detection Algorithm

Straightforward from the disassembly

Constants

Immediate values used by the binary code

Usage:

Chevron-right Computations

Chevron-right Memory manipulation

Chevron-right …

Detection Algorithm

Look at each constant occurrence count in
both versions of the function

20 / 63

Function Features Detailed

Strings

Common characteristic easily identifiable in
binary code

Usage:

Chevron-right Debug/Log message

Chevron-right Interface building

Chevron-right …

Detection Algorithm

Straightforward from the disassembly

Constants

Immediate values used by the binary code

Usage:

Chevron-right Computations

Chevron-right Memory manipulation

Chevron-right …

Detection Algorithm

Look at each constant occurrence count in
both versions of the function

20 / 63

Function Features Detailed

Calls

Interfunction flows within the program.

Call Graph Recovery Challenges

Chevron-right Function boundaries

Chevron-right Sources / destinations functions

Chevron-right Inlining

Detection Algorithm

Uses the function degrees and the number of
calls within the caller.

Func A

Func B

Func A

Func B

Func A

Func B

Func A

Thunk

Func B

21 / 63

Function Features Detailed

New conditions are present in 42% of patches

Conditions
Compare values to determine the control flow

LIGHTBULB The origin of compared terms is a semantic invariant.

Terms origin:

Chevron-right Constant value counting the program
arguments

Chevron-right Call return value checking the return
code

Chevron-right Function argument

Chevron-right Unknown if no other origin has been
identified

22 / 63

Origin Tracking Tainting Algorithm

Chevron-right cmp eax, 0xA
Compare the return value of
func_2 with an immediate

Chevron-right cmp ebx, ecx
Compare the first two
arguments of the function

Chevron-right cmp eax, [rbp+0x100]
Compare a return value with an
unknown memory cell

mov
cmp
jg

rdx, 0x2
eax, [rbp+0x100]
short loc_1146

mov
cmp
jmp

push
push
mov
mov
call
cmp
jg

rbp
rbx
rbx, edi
rcx, esi
func_2
eax, 0Ah
loc_1149

func(a, b):

rdx, 0x1
ebx, ecx
short loc_1166

23 / 63

Origin Tracking Tainting Algorithm

Chevron-right cmp eax, 0xA
Compare the return value of
func_2 with an immediate

Chevron-right cmp ebx, ecx
Compare the first two
arguments of the function

Chevron-right cmp eax, [rbp+0x100]
Compare a return value with an
unknown memory cell

mov
cmp
jg

rdx, 0x2
eax, [rbp+0x100]
short loc_1146

mov
cmp
jmp

push
push
mov
mov
call
cmp
jg

rbp
rbx
rbx, edi
rcx, esi
func_2
eax, 0Ah
loc_1149

func(a, b):

rdx, 0x1
ebx, ecx
short loc_1166

eax contains the return
value of func_2

23 / 63

Origin Tracking Tainting Algorithm

Chevron-right cmp eax, 0xA
Compare the return value of
func_2 with an immediate

Chevron-right cmp ebx, ecx
Compare the first two
arguments of the function

Chevron-right cmp eax, [rbp+0x100]
Compare a return value with an
unknown memory cell

mov
cmp
jg

rdx, 0x2
eax, [rbp+0x100]
short loc_1146

mov
cmp
jmp

push
push
mov
mov
call
cmp
jg

rbp
rbx
rbx, edi
rcx, esi
func_2
eax, 0Ah
loc_1149

func(a, b):

rdx, 0x1
ebx, ecx
short loc_1166

rbx is set from edi

The value is read from rbx

edi is the 1st

function argument

23 / 63

Origin Tracking Tainting Algorithm

Chevron-right cmp eax, 0xA
Compare the return value of
func_2 with an immediate

Chevron-right cmp ebx, ecx
Compare the first two
arguments of the function

Chevron-right cmp eax, [rbp+0x100]
Compare a return value with an
unknown memory cell

mov
cmp
jg

rdx, 0x2
eax, [rbp+0x100]
short loc_1146

mov
cmp
jmp

push
push
mov
mov
call
cmp
jg

rbp
rbx
rbx, edi
rcx, esi
func_2
eax, 0Ah
loc_1149

func(a, b):

rdx, 0x1
ebx, ecx
short loc_1166

rcx is set from esi

The value is read from rcx

esi is the second argument
of the function

23 / 63

Origin Tracking Tainting Algorithm

Chevron-right cmp eax, 0xA
Compare the return value of
func_2 with an immediate

Chevron-right cmp ebx, ecx
Compare the first two
arguments of the function

Chevron-right cmp eax, [rbp+0x100]
Compare a return value with an
unknown memory cell

mov
cmp
jg

rdx, 0x2
eax, [rbp+0x100]
short loc_1146

mov
cmp
jmp

push
push
mov
mov
call
cmp
jg

rbp
rbx
rbx, edi
rcx, esi
func_2
eax, 0Ah
loc_1149

func(a, b):

rdx, 0x1
ebx, ecx
short loc_1166

eax is the return value from func_2

23 / 63

Abstract Interpretation using BinCAT
Abstract Interpretation is an dataflow analysis to compute semantic invariants over the
program.

Magic
To recover the terms origin, use an abstract interpretation framework:

BinCAT.

Tainting Domain already implemented by BinCAT

Chevron-right U is Untainted
Chevron-right SofT set of possible tainting sources

Chevron-right ⊥ is bottom

Chevron-right > is top

24 / 63

Abstract Interpretation using BinCAT
Abstract Interpretation is an dataflow analysis to compute semantic invariants over the
program.

Magic
To recover the terms origin, use an abstract interpretation framework:

BinCAT.

Tainting Domain already implemented by BinCAT

Chevron-right U is Untainted
Chevron-right SofT set of possible tainting sources

Chevron-right ⊥ is bottom

Chevron-right > is top

24 / 63

Relaxations
implemented using BinCAT mechanisms

Chevron-right Skip function calls

Chevron-right Widen state instead of following backwards
edges

Chevron-right Silently ignore unknown instructions

QSig Summary

An implementation solving the FMP

QSig DetectorQSig Generator

Fixed binary

Vulnerable binary

Binary Differ Abstract Interpretation FrameworkDisassembler

Filter

Selector

Matcher

Match report

Signature

Difference
finder

Signature
generator

Signature

25 / 63

QSig Summary

An implementation solving the FMP

QSig DetectorQSig Generator

Fixed binary

Vulnerable binary

Binary Differ Abstract Interpretation FrameworkDisassembler

Filter

Selector

Matcher

Match report

Signature

Difference
finder

Signature
generator

Signature

25 / 63

Main Characteristics

Chevron-right Simple inputs: two binaries

Chevron-right Generate a patch signature

Chevron-right Applies signatures on a firmware

Chevron-right Works in a cross-architecture setting

QSig: Summary

Patch Information

Android Devices

QSig
(generator)

PatchAnalysis
QSig

(detector)

Filtering

Matching

Selecting
Patch Signatures Patch Missing

Patch Found

26 / 63

Outline

Chapter 3:

Commit-Level Precise Dataset

Patch Information

Android Devices

QSig
(generator)

QSig
(detector)

Filtering

Matching

Selecting
Patch Signatures Patch Missing

Patch Found

PatchAnalysis

27 / 63

Research Question

QSig is an implementation of the FSM.

? How to test it?

Chevron-right Compare it against state of the arts approaches

Chevron-right Evaluate it in real-world scenarios

28 / 63

State of the Art

To evaluate and test new techniques

Standard Test Suites

Test Suites composed of
hand-crafted bugs

Check-Circle Includes every
problem

Check-Circle Ground truth known
from start

Times-Circle Limited by author’s
knowledge

Example: Juliet [BB12]

Synthetic Datasets

Inject/Craft known bugs in
real-world programs

Check-Circle Uses legitimate and
complex programs

Check-Circle Every bug is
triggerable

Times-Circle Types of bugs are
limited

Example: LAVA [Dol+16],

MAGMA [HHP20]

From Vulnerabilities

Starts from a list of
vulnerabilities

Check-Circle Language agnostic

Check-Circle Real vulnerabilities in
real-programs

Times-Circle CVEs data needs to
be curated

Example: CVEFIXES [BNM21]

29 / 63

State of the Art

To evaluate and test new techniques

Standard Test Suites

Test Suites composed of
hand-crafted bugs

Check-Circle Includes every
problem

Check-Circle Ground truth known
from start

Times-Circle Limited by author’s
knowledge

Example: Juliet [BB12]

Synthetic Datasets

Inject/Craft known bugs in
real-world programs

Check-Circle Uses legitimate and
complex programs

Check-Circle Every bug is
triggerable

Times-Circle Types of bugs are
limited

Example: LAVA [Dol+16],

MAGMA [HHP20]

From Vulnerabilities

Starts from a list of
vulnerabilities

Check-Circle Language agnostic

Check-Circle Real vulnerabilities in
real-programs

Times-Circle CVEs data needs to
be curated

Example: CVEFIXES [BNM21]

29 / 63

State of the Art

To evaluate and test new techniques

Standard Test Suites

Test Suites composed of
hand-crafted bugs

Check-Circle Includes every
problem

Check-Circle Ground truth known
from start

Times-Circle Limited by author’s
knowledge

Example: Juliet [BB12]

Synthetic Datasets

Inject/Craft known bugs in
real-world programs

Check-Circle Uses legitimate and
complex programs

Check-Circle Every bug is
triggerable

Times-Circle Types of bugs are
limited

Example: LAVA [Dol+16],

MAGMA [HHP20]

From Vulnerabilities

Starts from a list of
vulnerabilities

Check-Circle Language agnostic

Check-Circle Real vulnerabilities in
real-programs

Times-Circle CVEs data needs to
be curated

Example: CVEFIXES [BNM21]

29 / 63

State of the Art

To evaluate and test new techniques

Standard Test Suites

Test Suites composed of
hand-crafted bugs

Check-Circle Includes every
problem

Check-Circle Ground truth known
from start

Times-Circle Limited by author’s
knowledge

Example: Juliet [BB12]

Synthetic Datasets

Inject/Craft known bugs in
real-world programs

Check-Circle Uses legitimate and
complex programs

Check-Circle Every bug is
triggerable

Times-Circle Types of bugs are
limited

Example: LAVA [Dol+16],

MAGMA [HHP20]

From Vulnerabilities

Starts from a list of
vulnerabilities

Check-Circle Language agnostic

Check-Circle Real vulnerabilities in
real-programs

Times-Circle CVEs data needs to
be curated

Example: CVEFIXES [BNM21]

29 / 63

Ideal Solution

Check-Circle Based on a real codebase

Check-Circle Composed of real vulnerabilities

Check-Circle Maintained over time

Vulnerability Dataset based on AOSP

Rationale of Using AOSP Vulnerabilities for a
Dataset

Check-Circle Heart of a complete Operating System every vulnerabilities are related

Check-Circle Real-word software billions of users

Check-Circle Representative of real problems found by researchers

Check-Circle Always up-to-date system is actively developped

30 / 63

Dataset Building

Creating a Dataset from Android Security Bulletins

Android Security Bulletins

Chevron-right Published monthly

Chevron-right Contain the list of vulnerabilities fixed by the update

Chevron-right And a link towards the fixing commit

Enables to build a dataset of vulnerabilities precise at the commit level implemented in a
tool named Roy.

31 / 63

Dataset Building

Creating a Dataset from Android Security Bulletins

Android Security Bulletins

Chevron-right Published monthly

Chevron-right Contain the list of vulnerabilities fixed by the update

Chevron-right And a link towards the fixing commit

Enables to build a dataset of vulnerabilities precise at the commit level implemented in a
tool named Roy.

31 / 63

Dataset Building

Creating a Dataset from Android Security Bulletins

Android Security Bulletins

Chevron-right Published monthly

Chevron-right Contain the list of vulnerabilities fixed by the update

Chevron-right And a link towards the fixing commit

Enables to build a dataset of vulnerabilities precise at the commit level implemented in a
tool named Roy.

31 / 63

Results

Chevron-right Huge set of vulnerabilities ≥ 3400 and ≥ 1900
with commits

Chevron-right Ever increasing but parser often needs to be
updated

Binary Artifacts

COMMENT To work with binary only methods, binary artifacts are required.

Solution
Using AOSP Build System to compile a project in two versions:

Chevron-right Vulnerable before the application of the fixing commit

Chevron-right Fixed after its application

Binary artifacts obtained differ by exactly the patch.

32 / 63

Binary Artifacts

COMMENT To work with binary only methods, binary artifacts are required.

Solution
Using AOSP Build System to compile a project in two versions:

Chevron-right Vulnerable before the application of the fixing commit

Chevron-right Fixed after its application

Binary artifacts obtained differ by exactly the patch.

32 / 63

Limitations & Results

Results of AOSPBuilder

Chevron-right ≈ 700 vulnerabilities compiled

Chevron-right From 2012 to 2021

Chevron-right Targeting 4 architectures (x86, x86_64, arm, arm64)

Limitations

Times-Circle Targets only vulnerabilities on native code

Times-Circle Build automation is challenging lot of failures

Times-Circle Only vulnerabilities after Android 6

33 / 63

Dataset Usage

How this dataset can be leveraged in various security workflows?

Chevron-right Silent Fix Detection detect if a commit fixes a security issue

Chevron-right (Cross-architecture) Binary Diffing uncover the difference between two binaries

Chevron-right Decompilation train algorithms to recover source from binary

Chevron-right Patch Characterization identify patches key components

Chevron-right Patch Detection check whether patches have been applied

Open-source and available on
Github https://github.com/quarkslab/aosp_dataset

34 / 63

https://github.com/quarkslab/aosp_dataset

Dataset Usage

How this dataset can be leveraged in various security workflows?

Chevron-right Silent Fix Detection detect if a commit fixes a security issue

Chevron-right (Cross-architecture) Binary Diffing uncover the difference between two binaries

Chevron-right Decompilation train algorithms to recover source from binary

Chevron-right Patch Characterization identify patches key components

Chevron-right Patch Detection check whether patches have been applied

Open-source and available on
Github https://github.com/quarkslab/aosp_dataset

34 / 63

https://github.com/quarkslab/aosp_dataset

Dataset: Summary

Patch Signatures Patch Missing

Patch Found

PatchAnalysis

QSig
(generator)

QSig
(detector)

Filtering

Matching

Selecting

Android Devices

Roy

AOSP
Builder Binary

Patches Data

Source Patches
DataAOSP

Android Security
Bulletins

35 / 63

Outline

Chapter 4:

Patch Detection Evaluation

Android Devices

Patch Signatures Patch Missing

Patch Found

PatchAnalysis

AOSP
Builder Binary

Patches Data

Source Patches
DataAOSP

Android Security
Bulletins

Roy

QSig
(generator)

QSig
(detector)

Filtering

Matching

Selecting

36 / 63

Selector Parameters

How many functions to select within the binary?

0 10 20 30 40

90

95

% Correct
(1-FP)%

Selected Functions

Pe
rc

en
ta

ge

Choose set n = 3 for the experiments because it is the best compromise

37 / 63

Matcher Parameters

How to arbitrate between inconsistent results?

any

majority

all

Yes

Yes

No

Our features are challenging to detect but the presence of at least one of them is a sign of
the patch presence.

38 / 63

Matcher Parameters

How to arbitrate between inconsistent results?

Function Valid Invalid
Success
Rate

all 7 19 27%

majority 21 5 81%

any 25 1 96%

Our features are challenging to detect but the presence of at least one of them is a sign of
the patch presence.

38 / 63

Matcher Parameters

How to arbitrate between inconsistent results?

Function Valid Invalid
Success
Rate

all 7 19 27%

majority 21 5 81%

any 25 1 96%

Our features are challenging to detect but the presence of at least one of them is a sign of
the patch presence.

38 / 63

Datasets used for the experiments

Demonstrating QSig versatility using several datasets

Dataset 1: CGC

Binaries from the DARPA
contest and adapted to a
regular OS

Chevron-right A vulnerable binary

Chevron-right A fixed one

Chevron-right A Proof of Vulnerability

Dataset 2: Debian 9 ISO

Directly from the official
website

Chevron-right About 5,500 binaries

Chevron-right 5 CVEs from
QuickBCC [Jan+21]

Dataset 3: Pixel 4 image

Downloaded from
Google’s website and
flashable

Chevron-right 3,400 binaries

Chevron-right 6 CVEs from Oct to
March 2019-2020

Chevron-right 20 CVEs around
January 2020

39 / 63

Generating Patch Signatures

On AOSP’s compiled CVEs

Architecture CVE
Signatures

Functions Success Rate

X86 377 1072 61%

X64 371 1273 60%

ARM 401 1069 65%

ARM64 339 938 55%

Union 459 1652 74%

Signature Generation

40 / 63

Generating Patch Signatures

On AOSP’s compiled CVEs

Architecture CVE
Signatures

Functions Success Rate

X86 377 1072 61%

X64 371 1273 60%

ARM 401 1069 65%

ARM64 339 938 55%

Union 459 1652 74%

Signature Generation

40 / 63

Conclusion

Chevron-right QSig success rate remains stable across
architectures

Chevron-right Our features are sufficient to sign most patches

On Dataset 1 CGC

Correct Incorrect Success
Percentage

Patched functions 250 3 99%

Vulnerable functions 212 41 84%

Total 462 44 91%

QSig’s Accuracy

41 / 63

Pertinence of a Static-Only Approach

1dVul [Pen+19] uses a hybrid approach

Total 1dVul QSig Increase

Changed functions 348 209 253 +21%

Patch detected 348 130 250 +92%

Comparison of QSig and 1dVul on Dataset 1 CGC

Configuring a hybrid environment is challenging for real-world contexts and does not yield
to better results.

42 / 63

Matching Results

From x64 signatures to aarch64 binaries from a Pixel 4 image

Feature TP TN FP FN Pr. Rec. N/A

Strings 21 12 - 1 1 0.95 14

Constants 13 3 - 1 1 0.93 31

Calls 2 6 3 23 0.40 0.08 14

Conditions 2 4 - 4 1 0.33 38

QSig 21 13 5 9 0.81 0.70 -

TP: True Positive TN: True Negative FP: False Positive FN: False Negative Pr: Precision Rec: Recall

43 / 63

Matching Results
From x64 signatures to aarch64 binaries from a Pixel 4 image

Feature TP TN FP FN Pr. Rec. N/A

Strings 21 12 - 1 1 0.95 14

Constants 13 3 - 1 1 0.93 31

Calls 2 6 3 23 0.40 0.08 14

Conditions 2 4 - 4 1 0.33 38

QSig 21 13 5 9 0.81 0.70 -

TP: True Positive TN: True Negative FP: False Positive FN: False Negative Pr: Precision Rec: Recall

Chevron-right The call precision/recall is poor

Chevron-right But the overall precision / recall is excellent

43 / 63

Matching Results
From x64 signatures to aarch64 binaries from a Pixel 4 image

Feature TP TN FP FN Pr. Rec. N/A

Strings 21 12 - 1 1 0.95 14

Constants 13 3 - 1 1 0.93 31

Calls 2 6 3 23 0.40 0.08 14

Conditions 2 4 - 4 1 0.33 38

QSig 21 13 5 9 0.81 0.70 -

TP: True Positive TN: True Negative FP: False Positive FN: False Negative Pr: Precision Rec: Recall

Chevron-right The call precision/recall is poor
Chevron-right But the overall precision / recall is excellent

43 / 63

Matching against PMatch

TP TN FP FN Pr. Rec.

QSig 21 13 5 9 0.81 0.70

PMatch 4 12 0 26 1.0 0.13

On Dataset 3 Pixel Images

PMatch uses a NLP algorithm to generate a binary code semantic representation.

They have a better precision but a limited recall.

44 / 63

Matching against PMatch

TP TN FP FN Pr. Rec.

QSig 21 13 5 9 0.81 0.70

PMatch 4 12 0 26 1.0 0.13

On Dataset 3 Pixel Images

PMatch uses a NLP algorithm to generate a binary code semantic representation.

They have a better precision but a limited recall.

44 / 63

Matching against PMatch

TP TN FP FN Pr. Rec.

QSig 21 13 5 9 0.81 0.70

PMatch 4 12 0 26 1.0 0.13

On Dataset 3 Pixel Images

PMatch uses a NLP algorithm to generate a binary code semantic representation.

They have a better precision but a limited recall.

44 / 63

Stability Over Time

Check if QSig produces usable results in a real-life scenario

2019 2020

Oct. Nov. Dec. Jan. Feb. Mar.

CVE–2019–2187 Check Check Check Check Check Check

CVE–2019–2202 ○ Check Check Check Check Check

CVE–2019–2220 ○ ○ Check Check Check Check

CVE–2020–0006 ○ ○ ○ Check Check Check

CVE–2020–0018 ○ ○ ○ ○ Check Check

CVE–2020–0037 ○ ○ ○ ○ ○ Check

45 / 63

Stability Over Time

Check if QSig produces usable results in a real-life scenario

2019 2020

Oct. Nov. Dec. Jan. Feb. Mar.

CVE–2019–2187 Check Check Check Check Check Check

CVE–2019–2202 ○ Check Check Check Check Check

CVE–2019–2220 ○ ○ Check Check Check Check

CVE–2020–0006 ○ ○ ○ Check Check Check

CVE–2020–0018 ○ ○ ○ ○ Check Check

CVE–2020–0037 ○ ○ ○ ○ ○ Check

45 / 63

Conclusion
QSig does not find a patch before its release and
always finds them after.

QSig’s Efficiency

Scan a Debian image for 5 CVEs

Dry Run Cached

QuickBCC QSig QuickBCC QSig

Run 8h 53m 34s 3m 09s 3m 24s 2m 11s

Preprocessing 8h 53m 19s 1m 9s 1m 34s 8s

Matching (s) 15 108 110 117

On Dataset 2 Debian Live ISO

46 / 63

QSig’s Efficiency

Scan a Debian image for 5 CVEs

Dry Run Cached

QuickBCC QSig QuickBCC QSig

Run 8h 53m 34s 3m 09s 3m 24s 2m 11s

Preprocessing 8h 53m 19s 1m 9s 1m 34s 8s

Matching (s) 15 108 110 117

On Dataset 2 Debian Live ISO

46 / 63

Conclusion

Chevron-right Half the time is taken by the disassembler

Chevron-right Caching helps tremendously 17,000%
improvment

Chevron-right QSig is fast thanks to the FSM

Limitations

Chevron-right Adversarial Transformations

Chevron-right Tainting Algorithm

Chevron-right Patch Completeness

Issue
Changes specifically targeted against features used by
QSig completely defeat the tool

Potential Solution
Chevron-right Add other features types (I/O behavior)

Chevron-right Consider this problem out of scope

47 / 63

Limitations

Chevron-right Adversarial Transformations

Chevron-right Tainting Algorithm

Chevron-right Patch Completeness

Issue
The tainting algorithm does not follow calls

Potential Solution
Create stub library to modelize classic function calls

47 / 63

Limitations

Chevron-right Adversarial Transformations

Chevron-right Tainting Algorithm

Chevron-right Patch Completeness

Issue
Checking the patch presence is not sufficient to assert
the vulnerable status of a device

Potential Solution
Combine QSig with dynamic approaches using Proof
of Vulnerabilities

47 / 63

Patch Detection Evaluation Summary

QSig is a versatile solution to search vulnerability patches inside complete file systems.

Chevron-right The Filtering-Selecting-Matching strategy is well suited and extensible to solve the
Firmware Matching Problem

Chevron-right QSig is fast successively pruning the search space

Chevron-right QSig correctly signs the patch semantic manages to do cross-architecture matching

Open-sourced and available on
Github https://github.com/quarkslab/qsig

48 / 63

https://github.com/quarkslab/qsig

Outline

Chapter 5:

Build Dependency Graphs

Patch Signatures Patch Missing

Patch Found

PatchAnalysis

AOSP
Builder Binary

Patches Data

Source Patches
DataAOSP

Android Security
Bulletins

QSig
(detector)

Filtering

Matching

Selecting QSig
(generator)

How to filter on
Android Devices?

Roy

Android Devices

49 / 63

Static Libraries and Vulnerabilities

Reusing code from other people in binaries is possible using:

Chevron-right Dynamic linking resolved at runtime

Chevron-right Static linking resolved at compile time

Android In Android 11, over 52% of binary targets include a statically linked library.

50 / 63

Static Libraries and Vulnerabilities

Reusing code from other people in binaries is possible using:

Chevron-right Dynamic linking resolved at runtime

Chevron-right Static linking resolved at compile time

Android In Android 11, over 52% of binary targets include a statically linked library.

50 / 63

Static Vulnerabilities

Definition
A static vulnerability is a vulnerability affecting a library that will be statically embedded.

22
39

162

73

45
30 26

2015 2016 2017 2018 2019 2020 2021
0

50

100

150

of
 C

V
E

Vulnerabilities affecting static libraries propagate through code bases.

51 / 63

Static Vulnerabilities

Definition
A static vulnerability is a vulnerability affecting a library that will be statically embedded.

22
39

162

73

45
30 26

2015 2016 2017 2018 2019 2020 2021
0

50

100

150

of
 C

V
E

Vulnerabilities affecting static libraries propagate through code bases.

51 / 63

Research Question
How to find if patches have also been propagated
to statically embedded libraries?

Unified Dependency Graph

Definition
An UDG is a directed graph UDG = (V,E) where V is the set of nodes and E is the set of
edges.

Chevron-right V = VT t VF with VT target node set and VF is the file node set

Chevron-right The edges represent the different dependency links between nodes

Solution
Create a UDG for AOSP to perform the filtering

52 / 63

UDG for Soong

cc_library_shared {
name: "liblpdump",
defaults: ["lp_defaults"],
shared_libs: ["libbase", "liblog",
"liblp",],↪→

static_libs: ["libjsonpbparse",],
srcs: ["lpdump.cc", "dynamic.proto",],

}

libbase.so

liblog.so

liblp.so

liblpdump.so

dynamic.proto

lpdump.cc

libjsonparse.a

Extract of a Soong module and its associated UDG

53 / 63

BGraph: UDG for AOSP

BGraph generates Build Graphs from AOSP build system

Check-Circle Fully static: No building time

Check-Circle Sparse: Almost no checkout

Check-Circle Accurate: No guessing

Potential Usages

Chevron-right Given a source file, what are the (build) targets dependent?

Chevron-right Given a target, what are the source files affected?

54 / 63

Patches in Static Libraries

QSig + BGraph = ♥

LIGHTBULB Using BGraph, write a new Filtering pass for QSig.

Key Benefits

Check-Circle Fast only a query in a graph

Check-Circle Sound the UDG precisely describes the dependencies

55 / 63

Results: Static Vulnerabilities

84 vulnerabilities: 35 anterior and 49 posterior

Feature TP TN FP FN Pr. Rec. NA

Strings 19 60 - 3 1 0.86 48

Constants 25 64 2 8 0.93 0.76 31

Calls 9 61 6 29 0.60 0.24 25

Conditions 6 15 1 - 0.86 1 108

Match 35 70 5 20 0.88 0.64 -

Detection in Static Libraries

Chevron-right Few False Positive
Chevron-right Good Precision and Recall overall

56 / 63

Results: Static Vulnerabilities

84 vulnerabilities: 35 anterior and 49 posterior

Feature TP TN FP FN Pr. Rec. NA

Strings 19 60 - 3 1 0.86 48

Constants 25 64 2 8 0.93 0.76 31

Calls 9 61 6 29 0.60 0.24 25

Conditions 6 15 1 - 0.86 1 108

Match 35 70 5 20 0.88 0.64 -

Detection in Static Libraries

Chevron-right Few False Positive

Chevron-right Good Precision and Recall overall

56 / 63

Results: Static Vulnerabilities

84 vulnerabilities: 35 anterior and 49 posterior

Feature TP TN FP FN Pr. Rec. NA

Strings 19 60 - 3 1 0.86 48

Constants 25 64 2 8 0.93 0.76 31

Calls 9 61 6 29 0.60 0.24 25

Conditions 6 15 1 - 0.86 1 108

Match 35 70 5 20 0.88 0.64 -

Detection in Static Libraries

Chevron-right Few False Positive
Chevron-right Good Precision and Recall overall

56 / 63

Results: Static Vulnerabilities

84 vulnerabilities: 35 anterior and 49 posterior

Feature TP TN FP FN Pr. Rec. NA

Strings 19 60 - 3 1 0.86 48

Constants 25 64 2 8 0.93 0.76 31

Calls 9 61 6 29 0.60 0.24 25

Conditions 6 15 1 - 0.86 1 108

Match 35 70 5 20 0.88 0.64 -

Detection in Static Libraries

Chevron-right Few False Positive
Chevron-right Good Precision and Recall overall

56 / 63

Conclusion
QSig is able to detect patches in statically linked
libraries.

Build Dependency Graph: Summary

Patch Signatures Patch Missing

Patch Found

PatchAnalysis

Binary
Patches Data

Source Patches
DataAOSP

Android Security
Bulletins

QSig
(detector)

Matching

Selecting

Filtering

QSig
(generator)

Android Devices

BGraph

Roy

AOSP
Builder

57 / 63

Conclusion: Contributions

General conclusion about contributions provided by this thesis

BOOK-OPEN Practical approaches to detect patches in binary code.

Formalize the
Firmware Matching

Problem

Introduce the
Filtering-Selecting-
Matching strategy

Extensively test its
application in QSig
with a large dataset

Extend it by using
Build Graphs as a
filtering step for
Android phones

58 / 63

Work: Summary

BGraph

Android Devices

Roy

AOSP
Builder Binary

Patches Data

Source Patches
DataAOSP

Android Security
Bulletins

QSig
(generator)

PatchAnalysis
QSig

(detector)

Filtering

Matching

Selecting
Patch Signatures Patch Missing

Patch Found

59 / 63

Research Perspectives

Possible challenges to tackle with a few more years

Chevron-right Extend to other contexts
Raw Firmwares, Real-Time systems, Windows, …

Chevron-right Understand a patch validity
How to be confident that a patch correctly fixes a vulnerability?

Chevron-right Encode patch presence requests as semantic queries
Using binary-code representation

60 / 63

Industrial Perspectives

How to apply these contributions in industrial contexts?

National Defense Authorization Act (2023) [Ada22]

A certification that each item listed on the submitted bill of materials is free from all known
vulnerabilities or defects affecting the security of the end product or service […]

In other contexts:

Chevron-right Secure the Supply Chain SBOM, FBOM

Chevron-right Improve audit efficiency

Chevron-right Gain the knowledge of residual risks in installed fleets

61 / 63

Industrial Perspectives

How to apply these contributions in industrial contexts?

National Defense Authorization Act (2023) [Ada22]

A certification that each item listed on the submitted bill of materials is free from all known
vulnerabilities or defects affecting the security of the end product or service […]

In other contexts:

Chevron-right Secure the Supply Chain SBOM, FBOM

Chevron-right Improve audit efficiency

Chevron-right Gain the knowledge of residual risks in installed fleets

61 / 63

Conclusion: Publications

Quokka: A Fast and Accurate
Binary Exporter

GreHack'22

2022

Towards Patch Detection using
Binary Only Semantic Signatures

to be submitted

Building a Commit-level Dataset
of Real-world Vulnerabilities

CODASPY'22

Exploitation du graphe de
dépendance d'AOSP à des

fins de sécurité
SSTIC'21

2021

62 / 63

Thank you for
your attention

63 / 63

Code Property Graph

From Yamaguchi et al. [Yam+14]

UncENTRY Unc
Dx

Dx

DECL True

False

Ctrue

Ctrue

PRED
Unc
Dy

DECL UncCALL EXIT

int =

x CALL

source

<

x MAX

sink ARG

y

int =

y *

x2
PDG Edge
AST Edge

CFG Edge

1 / 20

Tools & Other Publications

2021 2022

QSigAOSP
Dataset

Quokka

BGraph

Quokka: A Fast and
Accurate Binary Exporter

Commit Level
Vulnerability Dataset

2 / 20

Precision / Recall

Some measures used in this presentation

Chevron-right Precision
Precision is a measure of how many of the positive predictions made are correct

Precision =
TP

TN + FP

Chevron-right Recall
Recall is a measure of how many of the positive cases the classifier correctly predicted

Recall =
TP

TN + FN

Chevron-right F1-Score
F1-Score is a measure combining both precision and recall.

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall

3 / 20

Memcpy: Taint Propagation

memcpy Signature

void *memcpy(void *dest, const void * src, size_t n)

An ideal taint propagation system would also copy the taint of the first n bytes of src to dest.

Limitations
QSig current taint system does propagate the taint.

4 / 20

Abstract Interpretation 101

LIGHTBULB
Abstract interpretation is a theory of sound approximation of the semantics of
computer programs.

Problems
How to arbitrate betweeen decidability and tractability?

Domains
An abstract domain is a complete lattice a set of elements ordonned by a partial order

Standards domains

Chevron-right Sign

Chevron-right Intervals

5 / 20

BinCAT modifications

Chevron-right Some armv7 and armv8A instructions support

Chevron-right Added fake sections support to allow dereferencing memory from argument

Chevron-right Added a cfgTable config to resolve dynamic jumps (switch) with IDA information

Chevron-right Added a Failed_decoding exception to continue the execution even if the decoding
fails

6 / 20

AOSPBuilder: Compilation figures

Machine
The compilation was performed on a server thanks INRIA
AMD Opteron 63xx class CPU - 56 cores with 120 Gb of RAM

Key Figures:

Chevron-right 750 archives success

Chevron-right About 30 min / compilation / architecture when it works

Chevron-right Assume it takes 5 min when it fails

Rough Estimate: about 1,200 hours of compilation

7 / 20

Patch Analysis Figures

1
(77%)

2
(13%)2 < x <= 5

(6%)

>5
(4%)

Number of files affected by a patch

1
(58%)

2
(15%)

2 < x <= 5
(12%)

>5
(15%)

Number of functions affected by a patch

8 / 20

CVE Count

Why do we use so few CVEs in our tests?

Chevron-right When replicating the results of others, we use the same dataset.

Chevron-right For Pixel image, we need to check manually every result, in the binary, which is time
consuming.

9 / 20

PDG

Formalized by Ferrante [Fer87]

Definition
The PDG represents a program as a graph in which the nodes are statements and
predicate expressions (or operators and operands) and the edges incident to a node
represent both the data values on which the node’s operations depend and the control
conditions on which the execution of the operations depends.

To compute the PDG, compute the post dominator tree2

2Some examples on how to compute it in
Github https://github.com/cea-sec/miasm/blob/master/miasm/analysis/ssa.py

10 / 20

https://github.com/cea-sec/miasm/blob/master/miasm/analysis/ssa.py

Quokka

Hat-cowboy Quokka is a Fast and Accurate Binary Exporter.

Why creating this tool?

Chevron-right Untie the dependency of analysis and the disassembler

Chevron-right Fast and efficient storage capabilities

Chevron-right May be used in other projects firmware manipulations, machine learning feature
extraction

Open-source and available onGithub https://github.com/quarkslab/quokka

11 / 20

https://github.com/quarkslab/quokka

BGraph Limitations

Chevron-right Build system exhaustivity

Chevron-right Incomplete blueprint support

Chevron-right Work only for Soong

Issue
BGraph relies on Soong’s exhaustivity in AOSP.
However, the transition from Android.mk is not
finished.

Potential Solution
Wait until the migration is completed

12 / 20

BGraph Limitations

Chevron-right Build system exhaustivity

Chevron-right Incomplete blueprint support

Chevron-right Work only for Soong

Issue
The parsing of blueprints is incomplete

Potential Solution
Chevron-right Additional engineering efforts

Chevron-right Reuse the parser developed by Google directly

12 / 20

BGraph Limitations

Chevron-right Build system exhaustivity

Chevron-right Incomplete blueprint support

Chevron-right Work only for Soong

Issue
Soong is only used in AOSP, limiting the approach
applicability.

Potential Solution
Combining BGraph with other approaches working for
other build systems but this is challenging as BGraph
relies on Soong’s particularities.

12 / 20

Roy

Mining Android Security Bulletins

GitHub
Repository

Roy

Periodic
updater

Android Security
Bulletins

Android
Source Code

CVE
Databases

Users

13 / 20

AOSPBuilder

AOSP

Roy

Fixed binaries

Vulnerable binaries
Build fix version

Build Diffing

Build vulnerable
version

Extract fixing
commit

AOSP Builder

14 / 20

Patch Anatomy

Vulnerability

Binary A

Function 2

Function 1

Binary B

Function 4

Function 3

15 / 20

Binary Diffing

TODO?

16 / 20

Build Graphs

History

Modern softwares and large projects resort using build
systems.
Driving build systems is done using build scripts.

Limitations
Build Scripts are error-prone and most bug stem from dependency problems

There is a need for solution helping developers to write better build scripts:

Unified Dependency Graph (UDG)

Definition
An UDG is a directed graph UDG = (V,E) where V is the set of nodes and E is the set of
edges.

Chevron-right V = VT t VF with VT target node set and VF is the file node set

Chevron-right The edges represent the different dependency links between nodes

17 / 20

Build Graphs

Limitations
Build Scripts are error-prone and most bug stem from dependency problems

There is a need for solution helping developers to write better build scripts:

Unified Dependency Graph (UDG)

Definition
An UDG is a directed graph UDG = (V,E) where V is the set of nodes and E is the set of
edges.

Chevron-right V = VT t VF with VT target node set and VF is the file node set

Chevron-right The edges represent the different dependency links between nodes

17 / 20

Build Graphs

Limitations
Build Scripts are error-prone and most bug stem from dependency problems

There is a need for solution helping developers to write better build scripts:

Unified Dependency Graph (UDG)

Definition
An UDG is a directed graph UDG = (V,E) where V is the set of nodes and E is the set of
edges.

Chevron-right V = VT t VF with VT target node set and VF is the file node set

Chevron-right The edges represent the different dependency links between nodes

17 / 20

State of the Art

Compilation Database

Types of input required by the solution?

Check-Circle Contains the build commands

Times-Circle Not an UDG but a JSON file

Example: Clang, GCC

Dynamic Dependency Graph

Instruments the build system operations

Check-Circle Usually build-system agnostic

Times-Circle Requires a working build system

Example: Licker and Rice [LR19]

18 / 20

State of the Art

Static Dependency Graph

Parses the build scripts to uncover
dependencies

Check-Circle Works also for incomplete build systems

Times-Circle Cannot reason about missing
dependencies

Example: SYMake [Tam+12]

Hybrid Dependency Graph

Mixes previous approaches

Check-Circle Can reason about discrepencies
between actual and declared
dependencies.

Times-Circle Performs the compilation

Example: VeriBuild [Fan+20]

18 / 20

Android Open Source Project

The heart of Android

270k files C/C++ / version

30 min
of compilation / version

(with 56 cores)

~ 1250 tags

~ 2200 projects

Android
Open Source

Project
97k files Java / version

90 GB / version

6 architectures

19 / 20

Android Build System: Soong

Soong in a nutshell

Chevron-right Developped by Google for AOSP

Chevron-right Based on modules and rules

Chevron-right Definitions in Android.bp

Problem: how to generate an UDG?

Times-Circle Static approaches do not work for Soong

Times-Circle Dynamic approaches need to perform the compilation which takes space and time!

20 / 20

	Introduction
	Firmware Matching Problem
	Commit-Level Precise Dataset
	Patch Detection Evaluation
	Build Dependency Graphs
	Conclusion
	Appendix

